Biochemistry of Recombinational DNA Repair: Common Themes

Stephen Kowalczykowski University of California, Davis

- •Overview of genetic recombination and its function.
- Biochemical mechanism of recombination in Eukaryotes.
- •Universal features: steps common to all organisms.

Homologous Recombination

Genesis: Science and the Beginning of Time

DNA Replication Can Produce dsDNA Breaks and ssDNA Gaps

Repair of DNA Breaks

Double-Strand DNA Break Repair

	E. coli	Archaea	5. cerevisiae	Human
Initiation	RecBCD			
	SbcCD	Mre11/Rad50	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
	RecQ	Sgs1(?)	Sgs1(?)	RecQ1/4/5 LM/WRN(?)
	RecJ		ExoI	ExoI
	UvrD		Srs2	
Homologous Pairing	RecA	RadA	Rad51	Rad51
& DNA Strand	55B	SSB/RPA	RPA	RP <i>A</i>
Exchange	RecF(R)	RadB/B2/B3(?)	Rad55/57	Rad51B/C/D/Xrcc2/3
	RecO		Rad52	Rad52
			Rad59	
		Rad54	Rad54/Rdh54	Rad54/54B
				Brca2
DNA Heteroduplex	RuvAB	Rad54	Rad54	Rad54
Extension	RecG			
	RecQ		Sgs1(?)	RecQL/4/5 LM/WRN(?)
Resolution	RuvC	Hjc/Hje		
			Mus81/Mms4	Mus81/Mms4

E. coli	5. cerevisiae	Human
RecBCD		
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1(?)	RecQ1/4/5/BLM/WRN(?)
RecJ	ExoI	ExoI
UvrD	Srs2	
RecA	Rad51	Rad51
SSB	RP <i>A</i>	RP <i>A</i>
RecF(R)	Rad55/57	Rad51B/C/D/Xrcc2/3
RecO	Rad52	Rad52
	Rad59	
	Rad54/Rdh54	Rad54/54B
		Brca2
RuvAB	Rad54	Rad54
RecG		
RecQ	Sgs1(?)	RecQL/4/5/BLM/WRN(?)
RuvC		
	Mus81/Mms4(?)	Mus81/Mms4(?)

E. coli	5. cerevisiae	Human
RecBCD		
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1(?)	RecQ1/4/5/BLM/WRN(?)
RecJ	ExoI	ExoI
UvrD	Srs2	
RecA	Rad51	Rad51
SSB	RPA	RPA
RecF(R)	Rad55/57	Rad51B/C/D/Xrcc2/3
RecO	Rad52	Rad52
	Rad59	
	Rad54/Rdh54	Rad54/54B
-		Brca2
RuvAB	Rad54	Rad54
RecG		
RecQ	Sgs1(?)	RecQL/4/5/BLM/WRN(?)
RuvC		
	Mus81/Mms4(?)	Mus81/Mms4(?)

Rad52, Rad54, Rad55, and Rad57 Proteins Interact with Rad51 Protein and Stimulate DNA Strand Exchange

The Rad51 Nucleoprotein Filament

Why Are So Many Proteins Required to Make a RecA/Rad51Nucleoprotein Filament?

Answer: ssDNA Binding Protein (SSB/RPA)

The Temporal Order of Presynaptic Complex Formation

New, J.H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S.C. (1998) *Nature, 391*, 407-410 Kowalczykowski, S.C. (2000). Some assembly required.... *Nature Struct. Biol., 7,* 1087-1089

Rad52 Protein Has Two Functions

- 1) Rad52 is a "recombination mediator" protein: it promotes displacement of RPA by Rad51 to facilitate Rad51 nucleoprotein filament formation.
- 2) Rad52 anneals ssDNA that is complexed with RPA: it promotes ssDNA annealing (SSA) and "second-end" capture in DSBR.

Rad52 Mediates Annealing of RPAssDNA Complexes

Single-strand DNA Annealing

Rad52 Protein Facilitates both DNA Strand Invasion and ssDNA Annealing

Rad52 Protein Catalyzes Annealing of ssDNA

Rad52 Protein Catalyzes Annealing of ssDNA

Rad52 Protein Facilitates both DNA Strand Invasion and ssDNA Annealing

Rad52 Protein Mediates Rad51 Nucleoprotein Filament Formation

Rad52 Protein Mediates Rad51 Nucleoprotein Filament Formation

Rad52 Protein Can Promote Second-End Capture by ssDNA Annealing

Rad52 Protein Can Promote Synthesis-Dependent Strand Annealing

Rad52 Protein Can Promote Synthesis-Dependent Strand Annealing

E. coli	S. cerevisiae	Human
RecBCD		
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1(?)	RecQ1/4/5/BLM/WRN(?)
RecJ	ExoI	ExoI
UvrD	Srs2	
RecA	Rad51	Rad51
55B	RPA	RP <i>A</i>
RecF(R)	Rad55/57	Rad51B/C/D/Xrcc2/3
RecO	Rad52	Rad52
	Rad59	
	Rad54/Rdh54	Rad54/54B
		Brca2
RuvAB	Rad54	Rad54
RecG		
RecQ	Sgs1(?)	RecQL/4/5/BLM/WRN(?)
RuvC		
	Mus81/Mms4(?)	Mus81/Mms4(?)

The Srs2 Helicase Prevents Recombination by Disrupting Rad51 Nucleoprotein Filaments

Presynaptic filament formation is also under negative control.

Srs2 Helicase Disrupts Rad51 Nucleoprotein Filaments formed on ssDNA, but not on dsDNA

ssDNA:

dsDNA:

Rad54 Protein Both Stabilizes the Rad51-ssDNA Nucleoprotein Filament and Possesses Rad51-Stimulated Chromatin-Remodeling Activity

Mazin, A.V., Alexeev, A., and Kowalczykowski, S.C. (2003). *J. Biol. Chem.*, *278*, 14029–14036.

Alexeev, A., Mazin, A., and Kowalczykowski, S.C. (2003)

Nature Struct. Biol. 10, 182-186

Rad54 Protein Is a Member of Swi2/Snf2 Family of Proteins

- dsDNA-dependent ATPase activity
- No DNA helicase activity
- Topologically unwinds dsDNA
- •Interacts with free Rad51 protein
- Stimulates DNA pairing by Rad51 protein

Reconstitution of Mononucleosomes With Defined Positions

Rad54 Protein Facilitates Nucleosome Mobility

ATP Hydrolysis is Required for Remodeling

The Rad51-ssDNA Nucleoprotein Filament Enhances Nucleosome Remodeling by Rad54

A Stoichiometric Complex of Rad54 Protein and Rad51-ssDNA Nucleoprotein Filament is Optimal for Nucleosome Remodeling

Stimulatory Role of Rad54 Protein in DNA Strand Exchange

DNA Strand Exchange

Presynapsis

Rad51 protein

+ SSDNA-RPA complex

Rad52 protein Rad55/57 proteins

Rad54 protein

Synapsis

Rad54-Rad51-ssDNA nucleoprotein complex

Unwinding of dsDNA and disruption of chromatin structure

DNA strand exchange

Formation of Rad51-ssDNA nucleoprotein complex

Formation of Rad54-Rad51-ssDNA nucleoprotein complex

Does Recombination in Prokaryotes Proceed by the Same Mechanism as in Eukaryotes?

Proteins Involved in Recombinational DNA Repair

E. coli	S. cerevisiae	Human
RecBCD		
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1(?)	RecQ1/4/5/BLM/WRN(?)
RecJ	ExoI	ExoI
UvrD	Srs2	
RecA	Rad51	Rad51
SSB	RP <i>A</i>	RP <i>A</i>
RecF(R)	Rad55/57	Rad51B/C/D/Xrcc2/3
RecO	Rad52	Rad52
	Rad59	
	Rad54/Rdh54	Rad54/54B
		Brca2
RuvAB	Rad54	Rad54
RecG		
RecQ	Sgs1(?)	RecQL/4/5/BLM/WRN(?)
RuvC		
	Mus81/Mms4(?)	Mus81/Mms4(?)

Structurally Related Proteins Common to Prokaryotes and Eukaryotes

E. coli	S. cerevisiae	Human
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1	RecQ1/4/5/BLM/WRN
RecA	Rad51	Rad51
SSB	RPA	RPA
RecQ	5gs1(?)	RecQ1/4/5/BLM/WRN(?)

Proteins that are Related to the RecBCD-Pathway of *E. coli*

E. coli	S. cerevisiae	Human
RecA	Rad51	Rad51
SSB	RPA	RPA

Does Recombination in Prokaryotes Proceed by the Same Mechanism as in Eukaryotes?

There are two pathways of recombination in wild-type *E. coli*:

- 1) RecBC(D)-pathway
- 2) RecF(OR)-pathway

RecBCD Enzyme bound to a DNA End

RecBCD Enzyme Unwinding dsDNA

EM

The *E. coli* Recombination Hotspot, Chi (*C*rossover *h*otspot *i*nstigator), χ

- Is an asymmetric sequence.
- Must be encountered in correct orientation (from the 3'-side).
- Requires information only on the 3'-terminated strand.
- Stimulates recombination downstream of itself.
- Is the most over-represented octamer in the E. coli genome.

The *E. coli* Recombination Hotspot, Chi (χ) , is a Regulatory Sequence

- Chi regulates the biochemical activities of RecBCD enzyme:
 - It attenuates cleavage of the DNA strand that is 3' at the entry site.
 - It switches the polarity of DNA degradation onto the 5'-strand.
 - The result is preservation of the 3'-strand, with Chi at its terminus.
- Chi directs RecBCD enzyme to load RecA protein onto the Chi-containing ssDNA.

Chi is a Molecular Switch: It Down-regulates and Switches the Nuclease Activity of RecBCD Enzyme

Upon recognition of χ :

- 1) The vigorous 3' to 5' nuclease activity is attenuated.
- 2) A weaker 5' to 3' nuclease activity is upregulated.

Thus, nuclease activity is <u>reduced</u>, and the polarity of DNA strand degradation is <u>switched</u>.

χ Both Regulates the Nuclease Activity of RecBCD Enzyme and Coordinates the Loading of RecA Protein Onto the χ -Containing ssDNA

Functionally Similar Recombinational Repair Pathways

RecF(OR)-pathway ≈ Rad52-epistasis group

- Myth #1: Because 95-99% of conjugal recombination occurs via the RecBCD-pathway, this must mean the RecF-pathway is just a minor recombinational repair pathway in E. coli.
- Wrong!
- Why? Because the RecBCD-pathway is responsible for all *dsDNA-break repair*, whereas the RecF-pathway is responsible for *all ssDNA-gap repair*.

- Myth #2: Because the RecF-pathway is responsible for all ssDNA-gap repair, that must mean it can't repair dsDNA breaks.
- Wrong!
- Why? Because when the RecBCD-pathway is eliminated, suppressor mutations allow the RecF-pathway to repair *all dsDNA-breaks*, with an efficiency comparable to wild-type cells.

- Myth #3: Because the RecF-pathway was regarded to be pathway of minor significance, which was specific only to bacteria, that meant that it couldn't be relevant to eukaryotes.
- Wrong!
- Why? Because the enzymes of the RecF-pathway are biochemically similar to the Rad52-group of dsDNA break repair enzymes.

- Myth #4: Because the RecF-pathway was regarded to be pathway of minor significance and was thought to be specific to bacteria, not many people appreciated it.
- Unfortunately, this is true...

E. coli RecO Protein

- Acts in the RecF-pathway of homologous recombination.
- Physically interacts with RecF, RecR, SSB proteins.
- Mediates replacement of SSB bound to ssDNA with RecA protein.
- Anneals ssDNA that is complexed with SSB protein.

RecO Protein Has Two Functions

- RecO is a "recombination mediator" protein: it promotes displacement of SSB by RecA to facilitate RecA nucleoprotein filament formation (Kolodner lab).
- RecO anneals ssDNA that is complexed with SSB: it promotes ssDNA annealing (SSA) and "second-end" capture in DSBR.

The Temporal Order of Presynaptic Complex Formation (S. cerevisiae)

New, J.H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S.C. (1998) *Nature, 391*, 407-410 Kowalczykowski, S.C. (2000). Some assembly required.... *Nature Struct. Biol., 7,* 1087-1089

The Temporal Order of Presynaptic Complex Formation (*E. coli*)

The Temporal Order of Presynaptic Complex Formation (T4 phage)

Mediator Proteins Promote the Exchange of an ssDNA-binding Protein for its Cognate DNA Strand Exchange Protein

Proteins that Mediate RecA/Rad51/UvsX Nucleoprotein Filament Formation and Promote Annealing of ssDNA Complexed with the Cognate SSB Protein

S. cerevisiae Rad52
E. coli RecO
T4-phage UvsY

SSB-Displacing Proteins Are Also ssDNA Annealing Proteins

What is the biological significance of having SSB-displacement and DNA annealing functions in one protein?

Answer: SSB-displacement and DNA annealing are likely to be coupled events.

Annealing of an SSB-ssDNA Complex is a Universal Step in DSBR

and ligation

Functional Counterparts in Bacteria, Eucarya, and Phage

Function:	S. cerevisiae	E. coli	T4 phage
DNA strand exchange	Rad51	RecA	UvsX
ssDNA binding	RPA	SSB	Gene 32p
"Mediator" for presynaptic complex formation	Rad52	RecO	UvsY
DNA annealing	Rad52	RecO	UvsY

RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair

Morimatsu, K. and Kowalczykowski, S.C. (2003). *Mol. Cell, 11*, 1337-1347

"Gapped" DNA Substrates

RecA-loading Activity Can Be Followed by Measuring ATPase Activity of RecA Protein

The ssDNA-dsDNA Junction is the Site of RecFOR-Mediated Loading of RecA Protein

Loading efficiency:

RecA-Loading by RecFOR proteins Requires a Complementary 5'-End

Possible recognition sites:

RecFOR Proteins Accelerate DNA Strand Exchange by RecA Protein Between SSB-gDNA and dsDNA

DNA		gDNA				ssDNA
SSB	+	+	+	+	+	+
RecF	+	_	_	+	+	+
RecO	+	_	+	_	+	+
RecR	+	_	+	+	_	+
RecA	+	+	+	+	+	+
Time (min)	0 3 6 9 90	0 3 6 9 90	0 3 6 9 90	0 3 6 9 90	0 3 6 9 90	0 3 6 9 90

The RecFOR Proteins Load RecA Protein Specifically onto Gapped DNA

- RecF, RecO, and RecR proteins are all required for this loading reaction.
- The interactions between RecFOR and both RecA and SSB are species-specific.
- RecFOR proteins recognizes a base-paired 5'-end at ssDNA-dsDNA junction.
- RecF protein binds to the ssDNA-dsDNA junction.
- RecR protein binds to the RecF protein.
- RecO protein binds the RecR protein.

The RecFOR Complex Binds to the 5'-end of a dsDNA-ssDNA Junction to Nucleate RecA Assembly

Functionally Similar Recombinational Repair Pathways

	E. coli RecF-pathway	<i>5. cerevisiae</i> Rad52-epistasis group	Human Rad52-group
Initiation	SbcCD RecQ RecJ UvrD	Mre11/Rad50/Xrs2 Sgs1 ExoI Srs2	Mre11/Rad50/Nbs1 RecQL/4/5 BLM/WRN ExoI
Homologous Pairing & DNA Strand Exchange	RecA SSB RecF(R) RecO	Rad51 RPA Rad55/57 Rad52	Rad51 RPA Rad51B/C/D/Xrcc2/3 Rad52
DNA Heteroduplex Extension	RuvAB RecQ	Rad54 Sgs1	Rad54 RecQL/4/5 BLM/WRN
Resolution	RuvC	Mus81/Mms4/?	Mus81/Mms4/?

Functionally Similar Recombinational Repair Pathways

RecF(OR)-pathway ≈ Rad52-epistasis group

Bacterial/Archaeal/Yeast/Mammalian Functional Homologs and Orthologs

RecF RecR

RadB/RadB2

Rad55 Rad57 Rad51B Rad51C Rad51D Xrcc2 Xrcc3

Is Brca2 a Mediator Protein, that Functions Similarly to the Rad51 Paralogs?

Proteins Involved in Recombinational DNA Repair

E. coli	5. cerevisiae	Human
RecBCD		
SbcCD	Mre11/Rad50/Xrs2	Mre11/Rad50/Nbs1
RecQ	Sgs1(?)	RecQ1/4/5/BLM/WRN(?)
RecJ	ExoI	ExoI
UvrD	Srs2	
RecA	Rad51	Rad51
SSB	RP <i>A</i>	RP <i>A</i>
RecF(R)	Rad55/57	Rad51B/C/D/Xrcc2/3
RecO	Rad52	Rad52
	Rad59	
	Rad54/Rdh54	Rad54/54B
		Brca2
RuvAB	Rad54	Rad54
RecG		
RecQ	Sgs1(?)	RecQL/4/5/BLM/WRN(?)
RuvC		
	Mus81/Mms4(?)	Mus81/Mms4(?)

The People Who Did the Work:

Alex Mazin

Katsumi Morimatsu

Yun Wu

Jim New

Cynthia Haseltine

Tomohiko Sugiyama

Noriko Kantake

Andrei Alexeev